Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

Identifieur interne : 002907 ( Main/Repository ); précédent : 002906; suivant : 002908

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

Auteurs : RBID : Pascal:11-0400075

Descripteurs français

English descriptors

Abstract

Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H2 at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of Ptln nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0400075

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation</title>
<author>
<name sortKey="Sun, Pingping" uniqKey="Sun P">Pingping Sun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Bimolecular Engineering, University of California, Berkeley</s1>
<s2>CA 94720-1462</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Siddiqi, Georges" uniqKey="Siddiqi G">Georges Siddiqi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Bimolecular Engineering, University of California, Berkeley</s1>
<s2>CA 94720-1462</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vining, William C" uniqKey="Vining W">William C. Vining</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Bimolecular Engineering, University of California, Berkeley</s1>
<s2>CA 94720-1462</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chi, Miaofang" uniqKey="Chi M">Miaofang Chi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Oak Ridge National Laboratory, Oak Ridge</s1>
<s2>TN 37831-6064</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bell, Alexis T" uniqKey="Bell A">Alexis T. Bell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Bimolecular Engineering, University of California, Berkeley</s1>
<s2>CA 94720-1462</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0400075</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0400075 INIST</idno>
<idno type="RBID">Pascal:11-0400075</idno>
<idno type="wicri:Area/Main/Corpus">002A05</idno>
<idno type="wicri:Area/Main/Repository">002907</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-9517</idno>
<title level="j" type="abbreviated">J. catal. : (Print)</title>
<title level="j" type="main">Journal of catalysis : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkane</term>
<term>Alkene</term>
<term>Alloying</term>
<term>Characterization</term>
<term>Chemical reduction</term>
<term>Coke</term>
<term>Coke deposition</term>
<term>Composition</term>
<term>Dehydrogenation</term>
<term>Diameter</term>
<term>EXAFS spectrometry</term>
<term>Ethane</term>
<term>Fine structure</term>
<term>Graphite</term>
<term>Heterogeneous catalysis</term>
<term>Hydrotalcite</term>
<term>Indium</term>
<term>Mixed catalyst</term>
<term>Nanoparticle</term>
<term>Particle</term>
<term>Propane</term>
<term>Raman spectrometry</term>
<term>Selectivity</term>
<term>Support</term>
<term>Transmission electron microscopy</term>
<term>X ray absorption</term>
<term>XANES spectrometry</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Catalyseur mixte</term>
<term>Ethane</term>
<term>Propane</term>
<term>Déshydrogénation</term>
<term>Catalyse hétérogène</term>
<term>Alcane</term>
<term>Hydrotalcite</term>
<term>Support</term>
<term>Indium</term>
<term>Réduction chimique</term>
<term>Particule</term>
<term>Microscopie électronique transmission</term>
<term>Diamètre</term>
<term>Absorption RX</term>
<term>Structure fine</term>
<term>Spectrométrie EXAFS</term>
<term>Spectrométrie XANES</term>
<term>Sélectivité</term>
<term>Alcène</term>
<term>Dépôt coke</term>
<term>Alliage (action)</term>
<term>Coke</term>
<term>Caractérisation</term>
<term>Spectrométrie Raman</term>
<term>Graphite</term>
<term>Composition</term>
<term>Nanoparticule</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Propane</term>
<term>Coke</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H2 at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of Ptln nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-9517</s0>
</fA01>
<fA02 i1="01">
<s0>JCTLA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. catal. : (Print)</s0>
</fA03>
<fA05>
<s2>282</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SUN (Pingping)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIDDIQI (Georges)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VINING (William C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHI (Miaofang)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BELL (Alexis T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemical and Bimolecular Engineering, University of California, Berkeley</s1>
<s2>CA 94720-1462</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Oak Ridge National Laboratory, Oak Ridge</s1>
<s2>TN 37831-6064</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>165-174</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9623</s2>
<s5>354000508927940170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>56 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0400075</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of catalysis : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H2 at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of Ptln nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Catalyseur mixte</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Mixed catalyst</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Catalizador mixto</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ethane</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Ethane</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Etano</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Propane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Propane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Propano</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Déshydrogénation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Dehydrogenation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Deshidrogenación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Alcane</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Alkane</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Alcano</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Hydrotalcite</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Hydrotalcite</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Hidrotalcita</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Support</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Support</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Soporte</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Réduction chimique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Chemical reduction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Reducción química</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Particule</s0>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Particle</s0>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Partícula</s0>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Diamètre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Diameter</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Diámetro</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Absorption RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>X ray absorption</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Absorción RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Structure fine</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Fine structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estructura fina</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Spectrométrie EXAFS</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>EXAFS spectrometry</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Espectrometría EXAFS</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Spectrométrie XANES</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>XANES spectrometry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Espectrometría XANES</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Alcène</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Alkene</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Alqueno</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Dépôt coke</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Coke deposition</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Depósito coque</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Alliage (action)</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Alloying</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Aleación (acción)</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Coke</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Coke</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Coque</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Caractérisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Characterization</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Caracterización</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Raman spectrometry</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Espectrometría Raman</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Graphite</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Graphite</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Grafito</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Composition</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Composition</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Composicion</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>27</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Hydrocarbure</s0>
<s2>FX</s2>
<s5>28</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Hydrocarbon</s0>
<s2>FX</s2>
<s5>28</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Hidrocarburo</s0>
<s2>FX</s2>
<s5>28</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Composé éthylénique</s0>
<s5>29</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Ethylenic compound</s0>
<s5>29</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Compuesto etilénico</s0>
<s5>29</s5>
</fC07>
<fN21>
<s1>276</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002907 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002907 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0400075
   |texte=   Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024